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ABSTRACT

This paper investigates the supply-demand matching problem on dynamic plat-
forms, focusing on optimizing matching strategies by learning workers’ attributes
when their types are uncertain and constantly changing. To address this problem,
we introduce a latent factor model and a multi-centroid grouping penalty mecha-
nism to predict latent factors of workers and perform dynamic matching. Our ap-
proach operates in two stages: the first stage fits latent feature vectors for workers
and jobs and groups them using historical data; the second stage utilizes these la-
tent features for dynamic matching. Our research demonstrates that the introduced
model can adapt to the dynamic changes of the platform with good predictive con-
sistency and group robustness, and improves overall operational benefit through
continuous optimization of matching results. We provide simulation experiments
and a real case study using kidney exchange data and compare our model with a
point process model to show that our approach performs well on dynamic platform
matching problems.
Keywords: Dynamic matching, Learning, Two-sided market, Bi-clustering, La-
bel aggregation

1 INTRODUCTION

In the era of digital platforms, the two-sided matching market holds an important position in microe-
conomics Roth & Sotomayor (1990). The challenge of dynamically matching supply and demand
while continuously learning user attributes is both important and complex. Online platforms such as
labor markets, e-commerce websites, and fashion retail platforms constantly face the dual challenges
of optimizing matching and improving user preferences and ability understanding. This parallel
process of matching and learning is crucial for improving user satisfaction and platform efficiency.
Moreover, dynamic matching problems also have important applications in the medical field Roth
et al. (2004; 2005; 2007) Ashlagi et al. (2013) Ünver (2010), such as how to efficiently match donors
and recipients in organ transplantation to improve transplant success rates and patient survival rates,
which also requires balancing immediate benefits and long-term learning under limited resources.
These practical application scenarios all emphasize the importance of effective matching strategies.

A platform that needs to balance exploration and utilization must find a balance between maximiz-
ing matching value (utilization) and continuously learning about new participants to match them
(exploration) effectively. Using the terminology of the online labor market, the demand side is re-
ferred to as the worker, and the supply side is the job. Under the assumption that supply is limited,
matching a supply unit to a user makes it unavailable to others. The platform knows the job type but
must learn the unknown worker type through ongoing interactions. Workers leave after completing
a certain amount of work. Assuming the platform has system-level knowledge of worker and job
arrival rates, as well as the expected benefits from matching specific workers with specific jobs, the
goal is to maximize the steady-state cumulative rate of return.

This article presents a model using latent factor grouping penalties to optimize supply-demand
matching on dynamic platforms. It addresses the fluctuating nature of job types and worker cat-
egories by deeply analyzing their relationships, thereby enhancing platform efficiency. The model
operates in two phases: initially fitting latent factors from observed matches, and then using these
factors to identify skilled workers for smart matching.
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In the first stage, we train these latent factors through historical data, and each job and worker is
assigned a latent vector based on their historical performance. These vectors capture the complexity
of work and the ability of workers to handle different types of work. For example, the latent vector
of a job may highly emphasize technical skills, while the latent vector of a worker indicates their
proficiency in that skill. In the second stage, the model identifies which workers have higher work
efficiency by analyzing the matching degree between the latent vectors of work and workers. In
this process, we introduced a multi-center grouping penalty mechanism, which not only effectively
clusters similar jobs and workers, but also controls model complexity through penalty terms to
prevent overfitting.

Our research indicates that our model provides a new solution for dynamic platform matching prob-
lems, which can adapt to the dynamic changes of the platform and improve the accuracy and effi-
ciency of matching through continuous learning and optimization. The successful application of this
method is expected to greatly enhance the platform’s operational effectiveness and user satisfaction.

2 PROBLEM FORMULATION

In this paper, we study a supply-demand matching problem on a dynamic platform in Johari et al.
(2020). We follow the setting in Johari et al. (2020) to represent the supply side with jobs and the
demand side with workers. Every job and worker belongs to a specific type and the platform needs
to match workers and jobs at each time step (t = 0, 1, 2, . . . ) based on their types. We assume that
the job types on the platform are a finite set J and the worker types are also a finite set I . Assume a
system with fixed sets of job types J and worker types I , utilizing a continuum model with infinitely
many workers and jobs to reflect a sufficiently large dynamic market.

Formally, fix a distribution ρ over worker types, i.e. ρi > 0, ∀i ∈ I such that
∑

i∈I ρi = 1. We
assume that the system initially starts empty before t = 0, and in each period t = 0, ..., N − 1, a
mass 1/N of workers arrives in the system. (In what follows we ultimately consider a steady-state
analysis of the dynamical system and initial conditions will be irrelevant.) Each worker is of type i′

with probability ρi′ ; each worker’s type and arrival time are independent

For simplicity and to maintain a finite mass of workers at all times, we model a process where
workers and jobs regenerate every N periods, known as the worker’s lifetime, which the platform
recognizes. No further arrivals take place after period N. Instead, each worker subsequently regener-
ates every N period after their arrival: at a regeneration time, the worker type is resampled from the
distribution ρ; i.e., the new type is i with probability ρi, and these regenerations are also independent
across workers’ type and their arriving time.

Our goal is to predict the attributes of workers based on past matched job types and rewards, and
maximize expected rewards by adjusting matching, instead of optimizing realized rewards Dai &
Jordan (2021) Che & Koh (2016). Similar to decentralized matching markets Roth & Xing (1997)
Roth (2008), our platform ensures that only the attributes of workers and jobs and their matching
history affect matching. These matches are independent and not influenced by preferences. We
define R = {rij}m×n as a label matrix, where rij is the label for the ith worker given by the
jth job (i = 1, . . . ,m; j = 1, . . . , n). We assume rij ∈ {0, 1, . . . , C − 1} for multicategory
crowdsourcing with C categories. In practice, a worker will not be matched for all jobs, thus only
a subset of R is observed, and we denote the subset as Ω = {(i, j) : rij is observed}. We denote
Z = (Z1, Z2, . . . , Zm)′ as the true labels for workers, and if Zi = c, we name the ith worker as
label-c task. The goal of crowdsourcing is to predict Zi’s via aggregating observed rij’s.

Our model is based on task and worker features:

log

{
P (rij = Zi)

1− P (rij = Zi)

}
= µiνj (1)

where µi ∈ (0,∞) is a parameter measuring the difficulty level of the ith task and a larger µi

indicates less difficulty of the ith task, and νj ∈ (−∞,∞) is a parameter measuring the jth worker’s
ability with a higher value associated with greater ability to label tasks. The probability P (rij = Zi)
converges to 1 if µiνj → ∞, that is, the chance of correct labeling is high with a suitable job for a
highly capable worker.
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3 A MODEL OF MATCHING WHILE LEARNING

In this section, we will introduce a latent factor model from Xu et al. (2023) and propose a two-
stage model for multi-category matching. The first stage is to fit the learned worker attributes with
the latent factor model, group workers and jobs, and identify suitable jobs. The second stage is to
match workers and jobs dynamically with learned factors and groups. The model process can be
seen in Figure.1.

Figure 1: Model Process Overview

Initialization parameter Assume that the types of workers entering the platform are limited (there
are a total of C types), and that rij follow a categorical distribution:

rij ∼ categorical(p(0)ij , p
(1)
ij , . . . , p

(C−1)
ij ),

C−1∑
c=0

p
(c)
ij = 1, (i, j) ∈ Ω, (2)

where p
(c)
ij is the probability of rij equal to c. To model multi-category labels more flexibly, we

choose to model the probabilities of the observed labels instead of the probability of correctly label-
ing 1(rij = Zi) as in (1).

During the initialization, we set initial k-dimensional latent factors ai and bj for each worker i and
job j, reflecting their attributes such as skills and job requirements Whitehill et al. (2009). Normally
initialized randomly from N(0, 1), these factors can be adjusted based on prior knowledge about
workers’ skills (if any) to represent their capabilities better, improving matching returns in the initial
stage of the market.

Some existing algorithms ignore the heterogeneity of one party in the market Dawid & Skene (2018);
Ibrahim et al. (2019); Kim & Ghahramani (2012). To avoid this and fully consider the heterogeneity
of workers and jobs, we introduced a full parameterization model:

log

{
p
(c)
ij

p
(0)
ij

}
= a′ibj,c − a′ibj,0, c = 1, . . . , C − 1, (i, j) ∈ Ω (3)

where ai ∈ Rk is the latent factor for the ith worker and bj,c ∈ Rk represents the jth job’s feedback
for the label-c worker (preliminary determination of the value of each dimension corresponding
to worker attributes based on the benefits obtained from matching workers and jobs). The inner
product a′ibj,c measures the reward of matching the ith worker and the label-c job based on the jth
job’s feedback. Contrary to (1), the true labels Zi’s are implicitly embedded in ai’s, and we assume
thatworkers in the same category are likely to share similar latent features. Therefore, the latent
factors of tasks are expected to be clustered, where we use U = {Ui}mi=1 (Ui ∈ {0, 1, . . . , C − 1})
to denote the worker memberships. Here task membership U is a permutation of true labels Z, and
we need to recover the correspondence between U and Z in the later step.
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Stage One: Potential Factor Learning Here we introduce an approach to leverage the subgroup
structures within workers and jobs. Suppose there are D job groups in the market and the group
membership of jobs is denoted by V = {Vj}nj=1 where Vj ∈ {1, 2, . . . , D}. Jobs from the same
subgroup tend to have similar feedback for workers, and within-group correlations among jobs’
feedback should be taken into consideration. For job subgroup d ∈ {1, 2, . . . , D}, we introduce a
set of rotation matrices

O(d) = {O(d)
c | O(d)′

c O(d)
c = Ik×k,O

(d)
c ∈ Rk×k, c = 0, 1, . . . , C − 1}, (4)

to align the latent factors of the dth job subgroup with the latent factors of each worker category.
Specifically, for the jth job belonging to the dth subgroup, its feedback for the label-c workers is
modeled based on rotating its feedback for the reference category (label-0 workers are treated as a
reference in default in this paper) via the rotation matrix O

(d)
c :

bj,c = O(d)
c bj , c = 0, 1, . . . , C − 1, d = Vj , (5)

where we specify O
(d)
0 = Ik×k for an identifiability purpose such that bj = bj,0 represents

the jth job’s feedback for the reference group. We denote all the rotation matrices as O =
{O(1),O(2), . . . ,O(D)}. Based on the modeling in (3), the multicategory crowd labels follow a
logistic model:

θijc = log

{
P (rij = c)

P (rij = 0)

}
= a′i(O

(d)
c bj−a′ibj), c = 1, . . . , C−1, d = Vj , (i, j) ∈ Ω (6)

Note that the fitting model (6) does not predict the true label Z directly, but rather restores the sub-
group membership of worker U. Therefore, we aim to restore the correct correspondence between
the worker’s membership degree U and the true label Z. To achieve this goal, we identify appro-
priate job subgroups for each worker category and restore the corresponding relationships based on
the labels of suitable jobs. We assign unique labels to each job subgroup and rely on the following
assumptions for suitable job groups:

Assumption 1.For each worker category, a subset of jobs is the suitable job set for that worker
category if the members of the set have a greater match with workers in that category than other
sets. Matching suitable jobs with relevant workers is expected to yield the highest benefits.

Then, we need to identify high-quality workers. Assume that there are D worker subgroups. Denote
αI , I = 0, 1, ..., C−1 as latent factor centroids of jobs, and βI,J , I = 0, 1, ..., C−1, J = 1, 2, ..., D
for worker subgroup J for each job category I . In general, we can identify the high-quality worker
subgroup and the best profit for the ith job by the following criterion based on Assumption 1:

(ĉi, d̂i) = argmax
c∈{0,1,...,C−1}, d∈{1,2,...,D}

α′
Ui
βc,d

where d̂i is the high-quality worker group for the ith job and ĉi is the profit of the ith job by matching
with the high-quality worker group d̂i. The maximization can be done by profiling. For each fixed
worker group d = 1, 2, ..., D, the maximization over c corresponds to aligning the dth group workers’
profit with αUi . The maximization over d corresponds to identifying the high-quality worker group
for the ith job.

Stage Two: Dynamic Matching We apply the above learning process to the entire matching process
and consider more general cases. When t = n, ∀n ≥ 0, assume that the number of newly arrived
workers is n1 and the number of newly arrived jobs is n2. The job types belong to 0, 1, ..., C (there
are C job types in total) and the worker types belong to 0, 1, ..., D (there are D job types in total).
The platform needs to match each worker with an available job.

We first consider the workers who have arrived and are still on the platform at this time. The
assumption is that the platform has a history of each worker’s work (including the types of jobs they
have matched with and their job earnings), so it is necessary to learn the workers’ attributes based
on these historical records. The historical record of a worker is denoted as H=((j1, r1), . . . , (jm,
rm)), where jn represents the type of job that this worker has matched at the nth time step in the
system since the last regeneration; rn belongs to R and represents the performance of this worker in
the jn type of job, which, for convenience, can be expressed in terms of revenue.

4
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Through the benefit matrix, the label records of each worker can be obtained from the work history
records. Specifically, if the benefit matrix is known, and a worker generates a benefit of 1 when
completing job j, then label the worker i (Aij = maxk∈IAkj); In the event that the generated
benefit is equal to zero, the worker in question should be assigned the corresponding type label based
on the proportion of failure probability when other jobs are transferred to other types of workers. We
believe that this allocation method is reasonable and efficient when the sample size is sufficiently
large.

Next, it is necessary to consider all workers within the system, including the set of workers A
(assuming a quality of 1/N ) that are currently being regenerated and the workers M who have
previously arrived in the system. By analyzing the historical records of all workers in M , suitable
jobs can be identified for each worker type. A threshold is established for the set in M . If the mean
revenue generated by matching corresponding suitable jobs with distinct worker types reaches this
threshold, then these jobs are directly assigned to the corresponding worker type. Let K be the set
of all eligible workers. After matching the workers in K, the remaining jobs are randomly assigned
to workers in N and M \K.

Specifically, given the known distribution of workers, denoted by the function ρ, the number and type
of jobs, and the number of workers equal to the number of available jobs (assuming a sufficiently
large number and a strict distribution of ρ), we consider random matches between these workers
and jobs. Assuming the platform can generate revenue based on the type of workers and jobs,
the expected total revenue W0 can be calculated. Furthermore, the expected average benefit per
worker W can also be obtained and set as the aforementioned threshold. Additionally, the weights
of different job types can be adjusted. For example, the weight of high-difficulty job types can be
increased to minimize the likelihood of matching them with low-ability workers.

4 ALGORITHM

4.1 MULTI-CENTROID GROUPING PENALTY

To group workers and jobs, we introduce the multi-centroid grouping penalty from Xu et al. (2023).
Denote A = (a1, a2, ..., am) as collections of latent factors for jobs and B = (b1, b2, ..., bn) as col-
lections of latent factors for workers where bi = bi,0 (default with type-0 jobs as the reference).
Suppose that the group membership of workers and jobs is represented by the sets V and U, respec-
tively. In this context, we define the multi-centroid grouping penalty as follows:

Gλ(A,B,U,V) = λ
{
∥A−PA∥2F + ∥B−QB∥2F

}
where λ is a tuning parameter for penalization, matrices P and Q are projection matrices associated
with group memberships U and V by a one-to-one mapping Hoaglin & Welsch (1978) to calculate
the subgroup centroids of jobs and workers separately. Specifically, the projection matrices P and
Q project each latent factor ai and bj onto its corresponding centroids, i.e. Pai = αUi

and Qbj =
β0,Vj . Therefore, the multi-centroid grouping penalty is equivalent to

Gλ(A,B,U,V) = λ


C−1∑
I=0

∑
{i:Ui=I}

∥ai −αI∥2 +
D∑

J=1

∑
{j:Vj=J}

∥bj − β0,J∥2
 .

By incorporating the multi-centroid grouping penalty, we can estimate latent factors A, B, and group
memberships U, and V jointly by minimizing the negative penalized log-likelihood:

(Â, B̂, Ô, Û, V̂) = arg min
A,B,O,U,V

L(A,B,O) + Gλ(A,B,U,V). (7)

We introduce an alternating minimization algorithm to minimize this joint loss function.Specifically,
at the (t + 1)th iteration, we update (Â, B̂, Ô) sequentially given the estimation (Û(t), V̂(t)) as
follows:

5
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Â(t+1) = argmin
A
L(A, B̂(t), Ô(t)) + λ∥A− Û(t)A∥2F ,

B̂(t+1) = argmin
B
L(Â(t+1),B, Ô(t)) + λ∥B− V̂(t)B∥2F ,

Ô(t+1) = argmin
O
L(Â(t+1), B̂(t+1),O),

where the minimization regarding O is realized via performing Cayley transformation Wen & Yin
(2013) which guarantees the orthogonal constraints are held in the iterations. Specifically, we intro-
duce G = {G(1)

0 ,G
(1)
1 , . . . ,G

(1)
C−1, . . . ,G

(D)
C−1} as gradients of L with respect to O, where

G(d)
c =

∂L
∂O

(d)
c

.

We then define a set of matrices S = {S(1)
0 ,S

(1)
1 , . . . ,S

(1)
C−1, . . . ,S

(D)
C−1}, where

S(d)
c = G(d)

c O(d′)′
c −O(d)

c G(d′)′
c .

Then O
(d)
c ’s are updated following the Cayley transformation:

O(d)
c ← (I+

η

2
S(d)
c )−1(I− η

2
S(d)
c )O(d)

c , d = 1, . . . , D, c = 1, . . . , C − 1,

where η is a positive learning rate. We update O
(d)
c ’s iteratively until the algorithm converges. It

is noticeable that O(d)
c ’s remain orthogonal at each iteration for any positive value of η, and we set

η = 0.1 empirically which leads to a fast convergence while maintaining a low training error. In
addition, the update of latent factors ai’s and bj’s can be paralleled to speed up the computation.
Furthermore, the updates of projection matrices U and V are equivalent to cluster task and worker
latent factors into C and D subgroups separately. Therefore, we update U and V with the K-Means
algorithm.

5 THEORY

This section develops theoretical guarantees of our proposed mode. These theorems not only demon-
strate the soundness of our approach but also reassure users of its applicability in dynamic and
complex matching environments. See the Appendix for detailed proof.
Theorem 1 (Predictive Consistency). Let M denote the observed label matrix with entries Mij rep-
resenting the label assigned by worker j to task i, and Θ denote the latent feature matrix. Consider
a loss function L(M,Θ) and a group structure regularization G(Θ). Define the model optimization
problem as:

Θ̂ = argmin
Θ
{L(M,Θ) + λG(Θ)} ,

where λ is the regularization parameter. Under suitable regularity conditions on L and G, and given
appropriate choice of λ and sufficiently large sample size n, it holds that

P(Θ̂ consistently estimates Θ∗)→ 1 as n→∞.

Remark 1. The core significance of Theorem 1 is that it ensures that as the sample size of data
increases, the model can gradually converge to the true features of users and tasks, ensuring the
accuracy of the matching algorithm in dynamic platforms. In the first stage of latent feature learning,
historical data is used to fit the latent feature vectors of users and tasks, minimizing estimation
errors. By increasing the sample size, the model can gradually improve the accuracy of prediction,
which supports the algorithm’s ability to continuously improve matching performance in dynamic
environments.
Theorem 2 (Group Robustness). Define the true group labels for workers and tasks as V and U,
respectively, with estimated group labels V̂ and Û. The group robustness measure R(V,U) is
defined as:

R(V,U) =
1

n

n∑
i=1

1(v̂i = uσ(i)),

6
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where σ is the permutation that maximizes R. Under the assumption of adequate model specification
and large data limit, it holds that

R(V,U)→ 1 as n→∞.

Remark 2. Theorem 2 demonstrates the classification robustness of the model in multi-class match-
ing tasks, and as the sample size increases, the classification error will gradually approach zero.
This theorem is directly related to the multi-class task matching in the second stage of the model.
The model clusters tasks and users through latent factor models and multi-center grouping penalty
mechanisms to ensure the stability and robustness of classification. With the increase of data size,
the improvement of group classification accuracy can significantly enhance the matching efficiency
in dynamic platforms.

Theorem 3 (Convergence Rate). Define the estimation error ϵ(Θ) = ∥Θ̂−Θ∗∥. Under appropriate
regularization and sufficient sample size, the convergence rate of the estimation error is:

ϵ(Θ) = O

(
1√
n

)
,

indicating that the error decreases at the rate proportional to n−1/2 as the sample size n increases.

Remark 3. Theorem 3 quantifies the convergence rate of the model, ensuring that as the sample size
increases, the estimation error decreases at the rate of O(1/

√
n), providing a clear expectation for

matching performance. This theorem is directly related to the multi-centroid grouping penalty mech-
anism in the model, which helps to reduce overfitting in the latent feature space, thereby improving
matching accuracy. By understanding the convergence rate, platforms can plan better strategies for
data accumulation and matching accuracy improvements.

The above theorems form a robust mathematical framework. They ensure that the model not only
captures the complex dynamics of the marketplace but also adapts efficiently to changes, maintaining
high levels of accuracy and operational effectiveness.

6 NUMERICAL STUDIES

6.1 MATCHING SYSTEM SIMULATION WITH QUEUE-BASED SHADOW PRICES

In this section, we simulated an allocation process with queue-based shadow prices. (More com-
prehensive surveys of dynamic pricing and learning can be seen in den Boer & Zwart (2015) Sauré
& Zeevi (2013) Babaioff et al. (2013).) We consider a marketplace with |I| = 4 worker types and
|J | = 3 job types. The arrival rates of all the worker types are identical, i.e., ρi = 0.25 for all i ∈ I,
while the arrival rates of the job types are randomly chosen. The assumptions about the simulated
marketplace are described as follows.

Arrival process. Time is discrete, t = 1, 2, . . . ,, where we assume that N = 10, 20, 30, 40. At
the beginning of each time period t, a fixed MN (i) number of workers of type i arrive and they
stay for N periods. We choose MN (i) = 60/N for the different values of N for each i, so that,
irrespective of N , the total number of workers of any type i present in the market at any time t is
MN (i)×N = 60 (making a total of 60× |I| = 60× 4 = 240 workers present in the market at any
time).

Matching process. In this process, we set up the following benefit matrix, where the last column
corresponds to an empty job type.

A =

0.9 0.5 0.8 0
0.6 0.9 0.4 0
0.3 0.8 0.7 0
0.7 0.6 0.9 0


To better utilize our model, we tried to match each worker with the same type of work at every time
point in the first half of each process, to obtain high-quality work groups corresponding to different
types of workers. In each match, we use the benefit matrix and job type to label workers and record

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

all labels. Then, the latent factor model is used to infer the predicted labels for each worker, and a
more accurate predicted label is selected for subsequent work assignments.

Simulation output. We set the performance ratio as the main output, which presents The total rate
of reward for each time during the whole process. The result is shown in Figure 2 - 5.

Figure 2: N = 10 Figure 3: N = 20

Figure 4: N = 30 Figure 5: N = 40

It can be seen that the total reward gradually increases over time, but the increase is not significant,
which is actually related to the number of worker types and job types.

6.2 MATCHING SYSTEM SIMULATION WITH REAL-WORLD DATA ON KIDNEY EXCHANGES

In this section, we use our model to analyze data on kidney exchange in the real world Dai & He
(2023) and attempt to improve the success rate of kidney exchange, using data from the Organ Pro-
curement and Transplantation Network (OPTN) as of July 2022 provided by the United Network
for Organ Sharing (UNOS). We first collected and organized relevant information on kidney trans-
plantation, including recipient age, recipient age group, recipient gender, recipient blood type, donor
age, donor gender, donor blood type, PRA, AMIS, BMIS, DRMIS, HLAMIS (MIS represents the
corresponding antigen or HLA mismatch level), and GSTATUS-KI for each kidney transplantation
surgery. Our goal is to use these covariates to train a model and predict the compatibility of donors
and recipients in kidney transplantation surgery.

We treat each kidney transplant surgery as a task to be predicted, including the corresponding re-
cipient age, recipient age group, recipient gender, recipient blood type, donor age, donor gender,
and donor blood type. In other words, we treat the donor-recipient matching group that contains
this information as a task—simultaneously using GSTATUS-KI to define the success of transplanta-
tion, where 1 represents failure and 0 represents success, thus generating a true label set for judging
accuracy.

On the other hand, we use five covariates, PRA, AMIS, BMIS, DRMIS, and HLAMIS, as the work-
ers who label tasks. We calculated the 1/3 and 2/3 percentiles for each covariate, which serve as
thresholds for subsequent classification. To accurately reflect the impact of different mismatch indi-
cators on the success rate of transplantation, we designed two classification functions. Specifically,
for the PRA indicator, due to its opposite impact direction compared to other indicators, we adopted
a special classification logic: when the PRA value is higher than its 2/3th percentile, we consider
the result to be more ideal and therefore assign a lower classification label (0). On the contrary, for
other covariates, when the covariate value exceeds its 1/3 percentile, we classify it as 1, indicating
that the result may not be ideal. This approach ensures that each task has five workers predicting its
label and generating a corresponding set of labels. We applied the processed dataset to the model
and obtained an accuracy of 60% for matching prediction.
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6.3 COMPARISON WITH POINT PROCESS MODEL

As a comparison, we introduced the point process model from Perry & Wolfe (2013). Point process
models analyze random event occurrences in time or space by defining an intensity function that de-
scribes event probability based on time, location, and covariates. These models, used for time series
or spatial data, estimate parameters by maximizing likelihood functions to predict event patterns.
We try to use this model to analyze kidney transplant data and solve the matching problem between
donors and recipients. The idea is as follows.

Firstly, determine the objective of the problem: to predict the compatibility between donors and
recipients based on their detailed information. We collected data related to kidney transplantation,
including

Donor-related covariables: donor blood type, donor age, donor gender, donor BMI, donor hyper-
tension history, donor diabetes history, donor hepatitis C antibody results, donor hepatitis B surface
antigen results

Recipient-related covariables: recipient blood type, recipient age, recipient gender, recipient BMI,
recipient CMV status, recipient HIV serum status, whether the recipient receives dialysis treatment

Matching related covariables: donor-recipient ABO matching level, HLA mismatch level, kidney
cold ischemia time (hours), total days on the waiting list, transplantation date

Result covariables: graft survival Period (the number of days from transplantation to fail-
ure/death/final follow-up), whether the graft failed or not

To apply the point process model, we consider the success or failure of kidney transplantation as an
event and each transplantation attempt as a directed interaction (donor to recipient). Our goal is to
build a predictive model to determine whether successful transplantation will occur within a given
time frame.

Specifically, we use a form similar to the Cox proportional strength model to model the interaction
(i.e. successful transplantation) as a point process. Assuming the donor is i, the recipient is j, and
the transplantation time is t, define the intensity functionλt(i, j)

λt(i, j) = λ0(i) exp(β
Txt(i, j))

where λ0(i) is the baseline hazard function for the i-th individual.xt(i, j) is the vector of covariates
affecting the i-th individual and the j-th event at time t.β is the vector of coefficients.

Next, in the data preprocessing stage, we standardize the date format and encode categorical vari-
ables such as gender, history of hypertension, diabetes, and HIV status. Categorical features like
blood type are processed using one-hot encoding, and missing values in the data are filled to ensure
data integrity.

During model parameter initialization, the initial estimates of model coefficients are set to zero, and
the initial weights for the risk model are set to 1. A critical step involves calculating the gradients
and Hessians, based on the risk set expression

W (β, i, j) = W0(β, i) exp(∆Xt(i, j)
Tβ)

where W0(β, i, j) represents the baseline risk, and ∆Xt(i, j) is the dynamic part of the covariates.

In defining the objective function, we optimize the objective function defined by the gradients and
Hessians using Newton’s method. The specific calculations of gradients and Hessians rely on the
formulas

∇ logPL(β) =
∑
i∈I

(XT
i πt − Ei)

∇2 logPL(β, i) = XT
i (Πβ,i − πT

β,t,iπβ,t,i)Xi

9
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where πβ,t,i = W (β, i, j)/W (β, i) represents the normalized risk.

Finally, model optimization and evaluation are conducted by minimizing the objective function to
find optimal parameters, and the predictive performance of the model is assessed by calculating the
ROC curve and AUC score. The specific results we obtained are shown in Figure 6.

Figure 6: N = 10

By comparison, point process modeling and the matching while learning model have some simi-
larities when addressing kidney transplant matching issues, such as needing to preprocess raw data
by encoding and normalization, and estimating parameters by maximizing some form of likelihood
function. However, they have significant differences in model structure, dynamic processing, and
network effects. Point process modeling, using the Cox proportional intensity model, focuses on
time dynamics and event probability, ideal for time-dependent data. It processes dynamic covariates
through partial likelihood inference, evaluating complex network interactions like donor-recipient
homophily. In contrast, the matching while learning model, employing a latent factor model with
multi-centroid grouping, suits scenarios requiring dynamic updates in worker-job groupings. It up-
dates attributes and matches quality based on historical data, handling complex network effects less
extensively.

7 CONCLUSION

This article uses the latent factor model to solve the dynamic supply problem in market matching,
focusing on how to reasonably use the two stages of the model for this problem, as well as con-
sidering the impact of time in the matching process. Our application enables the model to adapt to
the dynamic changes of the platform and continuously optimize the matching efficiency and match-
ing results. Experiments show that this method is suitable for the matching problem of multi-class
workers and jobs, and the results are better than other methods. The advantage of this method is that
it can handle markets with more individual categories, the number of which is theoretically unlim-
ited. However, in practical situations, as the types of workers and jobs in the market increase, the
accuracy of this method needs to be improved, which can serve as a future research direction.
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A APPENDIX

A.1 PROOF OF THEOREM 1 AND THEOREM 3

Define the loss function L(M,Θ) as the likelihood function for the observed data M and the pa-
rameter Θ. Assume L is convex and continuously differentiable for all Θ. The regularization term
G(Θ) is also convex and continuously differentiable for all Θ, used to introduce prior knowledge of
group structures.

Firstly, we assume that the estimator Θ̂ is obtained from the following optimization problem as
sample size n increases:

Θ̂ = argmin
Θ
{L(M,Θ) + λG(Θ)}

Since L is convex, we can use Taylor expansion to approximate the local behavior of L at Θ∗:

L(M,Θ) ≈ L(M,Θ∗) +∇L(M,Θ∗)T (Θ−Θ∗) +
1

2
(Θ−Θ∗)T∇2L(M,Θ∗)(Θ−Θ∗).

At Θ∗,∇L(M,Θ∗) = 0 as Θ∗ is the minimum point of L.

According to the Law of Large Numbers, we know that the average of the estimators converges to
the expected value, i.e.,

Θ̄
p−→ E[Θ].

Using the Central Limit Theorem, the distribution of the estimators approaches a normal distribution:
√
n(Θ̄− E[Θ])

d−→ N (0,Σ),
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where Σ can be calculated from the inverse of the Fisher information matrix I(Θ∗) at Θ∗:

Σ = I(Θ∗)−1, I(Θ) = E[−∇2L(M,Θ)].

Appropriately choose λn to ensure λn → 0 and nλn → ∞, so that the regularization term is
sufficiently small not to affect consistency but enough to maintain model complexity. Specifically,
we can take λn = 1√

n
.

With the choice of λn as mentioned, we can show:

∥Θ̂−Θ∗∥ = Op(n
−1/2),

meaning that the decrease in estimation error rate is proportional to n−1/2, which is the standard
rate of convergence for parameter estimation.

A.2 PROOF OF THEOREM 2

In considering the proof of group robustness, the first step is to define an appropriate clustering
algorithm. In this proof, we choose the spectral clustering algorithm because it effectively handles
data groups formed in latent feature spaces that are non-spherical or linearly inseparable.

We choose to use the k-means clustering algorithm because it performs well in handling data with
well-defined group centers. The algorithm iterates the following steps until convergence:

1. Randomly select C initial centers.
2. Assign each point to the nearest center, forming C groups.
3. Update each group’s center to the mean of all points in that group.

In spectral clustering, it’s crucial to ensure that different groups are separable in the latent space. We
use concentration inequalities, such as Hoeffding’s inequality, to ensure that the distances between
different groups are statistically significant.

For independent and identically distributed random variables X1, X2, ..., Xn with expectation µ, we
have:

P (|X̄ − µ| ≥ t) ≤ 2 exp(−2nt2/range(X)2),

where X̄ is the sample mean, and t is any positive number. In our scenario, Xi might be a mea-
sure of some latent feature dimension, and this inequality helps bind the probability of intra-group
consistency and inter-group separation.

After clustering, we compare the estimated group labels Û and V̂ to the true group labels U and
V . The classification error bound is defined by calculating the rate of inconsistencies between the
estimated and true labels.

Let R(V̂ , Û) be the proportion of correctly classified instances, then:

R(V̂ , Û) =
1

n

n∑
i=1

1(v̂i = uσ(i)),

where σ is a permutation that maximizes the matching accuracy between estimated and true labels.
And as n approaches positive infinity, R(V̂ , Û) goes to 1.
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